Prove that root3 is irrational
Answers
Answer:
Let us assume that √3 is a rational number.
then, as we know a rational number should be in the form of p/q
where p and q are co- prime number.
So,
√3 = p/q { where p and q are co- prime}
√3q = p
Now, by squaring both the side
we get,
(√3q)² = p²
3q² = p² ........ ( i )
So,
if 3 is the factor of p²
then, 3 is also a factor of p ..... ( ii )
=> Let p = 3m { where m is any integer }
squaring both sides
p² = (3m)²
p² = 9m²
putting the value of p² in equation ( i )
3q² = p²
3q² = 9m²
q² = 3m²
So,
if 3 is factor of q²
then, 3 is also factor of q
Since
3 is factor of p & q both
So, our assumption that p & q are co- prime is wrong
hence,. √3 is an irrational number
Step-by-step explanation:
please mark me as brainliest
Let us assume to the contrary that √3 is a rational number.
It can be expressed in the form of p/q
where p and q are co-primes and q≠ 0.
⇒ √3 = p/q
⇒ 3 = p2/q2 (Squaring on both the sides)
⇒ 3q2 = p2………………………………..(1)
It means that 3 divides p2 and also 3 divides p because each factor should appear two times for the square to exist.
So we have p = 3r
where r is some integer.
⇒ p2 = 9r2………………………………..(2)
from equation (1) and (2)
⇒ 3q2 = 9r2
⇒ q2 = 3r2