Math, asked by bojfs, 1 year ago

Prove that, √{(sec θ – 1)/(sec θ + 1)} = cosec θ - cot θ. 

Answers

Answered by Anonymous
7

\bf\huge\textbf{\underline{\underline{According\:to\:the\:Question}}}  

\bf\huge{\implies\sqrt{\dfrac{secA-1}{secA+1}}}

\bf\huge{\implies\sqrt{\dfrac{(secA-1)^2}{(secA+1)(secA+1)}}}

\bf\huge{\implies\sqrt{\dfrac{(secA-1)^2}{sec^2 A-1}}}

\bf\huge{\implies\sqrt{\dfrac{(secA-1)^2}{tan^2 A}}}

\bf\huge{\implies\dfrac{secA-1}{tanA}}        

\bf\huge{\implies\dfrac{secA}{tanA-1/tanA}}

\bf\huge{\implies\dfrac{1}{cosA} / \dfrac{sinA}{cosA}- cotA}        

\bf\huge{\implies\dfrac{1}{sinA} - cotA}

= CosecA - cotA

\bf\huge\bf\huge{\boxed{\bigstar{{LHS\: = \:RHS}}}}


Anonymous: Hope this is helpful for u
Anonymous: wow....!! nice ans bro ✌
Similar questions