Math, asked by Anonymous, 11 months ago

Prove that:-)
Sec^2 theta + Cos^2 theta will be never less than 2. (WITHOUT USING HIT AND TRIAL METHOD)

Answers

Answered by AR17
1
Hey, there!

Here's your answer.

  { \sec }^{2}θ +  { \cos }^{2} θ =  \frac{1}{ { \cos }^{2}θ }   +  { \cos}^{2} θ \\  \\   =  \frac{1 +  {  \cos  }^{4} θ}{ { \cos }^{2}θ }

For \:  minimum  \: value  \: of  \:  \: \frac{1 +  {  \cos  }^{4} θ}{ { \cos }^{2}θ }  \\  \\  \frac{d}{dθ}  \: (\frac{1 +  {  \cos  }^{4} θ}{ { \cos }^{2}θ } ) = 0

Differentiating, we get,

–4cos³θsinθcos²θ + 2sinθcosθ(1 + cos⁴θ) = 0

4cos⁴θ = 2(1 + cos⁴θ)

2cos⁴θ = 1 + cos⁴θ

cos⁴θ = 1

That means, θ = nπ where n ∈ Z

cos(nπ) = ± 1

cos²(nπ) = cos⁴(nπ) = 1

So, \:  minimum  \: value \:  of  \: \frac{1 +  {  \cos  }^{4} θ}{ { \cos }^{2}θ }  \:  \\  \\  = \frac{1 +  {  \cos  }^{4} n\pi}{ { \cos }^{2}n\pi }  \:  =  \frac{1 + 1}{1}  = 2
Therefore, the minimum value of the function is 2 and maximum value is +∞ (when cosθ = 0)

(See the graph in the attachment)



Hope that helps.

Thanks.
Attachments:
Similar questions