Math, asked by jaykrishnam8, 1 month ago

Prove that:
Sec^3A.Cosec^3A-3SecA.CosecA=Tan^3+Cot^3​

Answers

Answered by mathdude500
11

Appropriate Question :-

Prove that

\rm \: \: {sec}^{3}A \:  {cosec}^{3}A - 3 \: secA \: cosecA =  {tan}^{3}A +  {cot}^{3} A

\large\underline{\sf{Solution-}}

Consider RHS

\rm :\longmapsto\: {tan}^{3}A +  {cot}^{3}A

can be rewritten as

\rm \:  =  \: {(tanA)}^{3} +  {(cotA)}^{3}

We know,

\boxed{ \tt{ \:  {x}^{3} +  {y}^{3} =  {(x + y)}^{3} - 3xy(x + y) \: }}

So, using this identity, we get

\rm \:  =  \: {(tanA + cotA)}^{3} - 3tanA \: cotA \: (tanA + cotA)

\rm = {\bigg[\dfrac{sinA}{cosA}  + \dfrac{cosA}{sinA} \bigg]}^{3} - 3tanA \times \bigg[\dfrac{1}{tanA} \bigg]\bigg[\dfrac{sinA}{cosA}  + \dfrac{cosA}{sinA} \bigg]

\rm = {\bigg[\dfrac{ {sin}^{2} A +  {cos}^{2}A}{sinA \: cosA} \bigg]}^{3} - 3\bigg[\dfrac{ {sin}^{2} A +  {cos}^{2}A}{sinA \: cosA} \bigg]

\rm = {\bigg[\dfrac{ 1}{sinA \: cosA} \bigg]}^{3} - 3\bigg[\dfrac{ 1}{sinA \: cosA} \bigg]

We know,

\boxed{ \tt{ \:  \frac{1}{sinx} = cosecx}} \:  \:  \: and \:  \:  \: \boxed{ \tt{ \:  \frac{1}{cosx} = secx}}

So, using this, we get

\rm \:  =  \: {\bigg[secAcosecA\bigg]}^{3} - 3secAcosecA

\rm \:  =  \: {sec}^{3}A \:  {cosec}^{3}A - 3 \: secA \: cosecA

Hence,

\boxed{ \tt{{sec}^{3}A{cosec}^{3}A - 3secAcosecA={tan}^{3}A+{cot}^{3} A}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by XxitsmrseenuxX
3

Answer:

Appropriate Question :-

Prove that

\rm \: \: {sec}^{3}A \:  {cosec}^{3}A - 3 \: secA \: cosecA =  {tan}^{3}A +  {cot}^{3} A

\large\underline{\sf{Solution-}}

Consider RHS

\rm :\longmapsto\: {tan}^{3}A +  {cot}^{3}A

can be rewritten as

\rm \:  =  \: {(tanA)}^{3} +  {(cotA)}^{3}

We know,

\boxed{ \tt{ \:  {x}^{3} +  {y}^{3} =  {(x + y)}^{3} - 3xy(x + y) \: }}

So, using this identity, we get

\rm \:  =  \: {(tanA + cotA)}^{3} - 3tanA \: cotA \: (tanA + cotA)

\rm = {\bigg[\dfrac{sinA}{cosA}  + \dfrac{cosA}{sinA} \bigg]}^{3} - 3tanA \times \bigg[\dfrac{1}{tanA} \bigg]\bigg[\dfrac{sinA}{cosA}  + \dfrac{cosA}{sinA} \bigg]

\rm = {\bigg[\dfrac{ {sin}^{2} A +  {cos}^{2}A}{sinA \: cosA} \bigg]}^{3} - 3\bigg[\dfrac{ {sin}^{2} A +  {cos}^{2}A}{sinA \: cosA} \bigg]

\rm = {\bigg[\dfrac{ 1}{sinA \: cosA} \bigg]}^{3} - 3\bigg[\dfrac{ 1}{sinA \: cosA} \bigg]

We know,

\boxed{ \tt{ \:  \frac{1}{sinx} = cosecx}} \:  \:  \: and \:  \:  \: \boxed{ \tt{ \:  \frac{1}{cosx} = secx}}

So, using this, we get

\rm \:  =  \: {\bigg[secAcosecA\bigg]}^{3} - 3secAcosecA

\rm \:  =  \: {sec}^{3}A \:  {cosec}^{3}A - 3 \: secA \: cosecA

Hence,

\boxed{ \tt{{sec}^{3}A{cosec}^{3}A - 3secAcosecA={tan}^{3}A+{cot}^{3} A}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions