Math, asked by alisha4249, 11 months ago

prove that sec(π/4+x)sec(π/4-x)=2sec2x​

Answers

Answered by amitnrw
47

Answer:

sec(π/4+x)sec(π/4-x)=2sec2x​

Step-by-step explanation:

Prove that sec(π/4+x)sec(π/4-x)=2sec2x​

Secθ = 1/Cosθ

LHS

= sec(π/4+x)sec(π/4-x)

= 1/Cos(π/4+x)Cos(π/4-x)

Cos(A+B) = CosACosB - SinASinB

= 1/(Cos(π/4)Cosx - Sin(π/4)Sinx)((Cos(π/4)Cosx + Sin(π/4)Sinx)

=1/(Cos²(π/4)Cos²x - Sin²(π/4)Sin²x))

Cos²(π/4) = Sin²(π/4) = 1/2

= 1/((Cos²(π/4)(Cos²x  - Sin²x)

= 2/ (Cos²x  - Sin²x)

=2/ (Cosx Cosx - Sinx SInx)

= 2/ (Cos(x + x)

= 2/ Cos(2x)

= 2 Sec2x

= RHS

QED

Proved

Similar questions