Math, asked by shejal8, 10 months ago

Prove that sec 50° sin 40° + cos 40° cosec 50° = 2.​

Answers

Answered by Anonymous
3

Answer:

2

Step-by-step explanation:

sec 50° sin 40° + cos 40° cosec 50°

=> sec(90° - 40°) * sin 40° + cos (90° - 50°) * cosec 50°

=> cosec 40° * sin 40° + sin 50° * cosec 50°

=> cosec 40° * (1/cosec 40°) + (1/cosec 50°) * cosec 50°

=> 1 + 1

=> 2

#MarkAsBrainliest

Answered by Anonymous
4

To Prove :

  •  \sec(50)  \sin(40)  +  \cos(40)  \csc(50)  = 2

Proof :

L.H.S =

 \sec(50)  \sin(40)  +  \cos(40)  \csc(50)

But,

We know that,

  \bold{\sec( \alpha )  =  \frac{1}{ \cos( \alpha ) } }

And

  \bold{\csc( \alpha )  =  \frac{1}{ \sin( \alpha ) } }

Therefore,

We get,

 =  \frac{ \sin(40) }{ \cos(50) }  +  \frac{ \cos(40) }{ \sin(50) }

But,

We know that,

 \bold{\cos( \alpha ) =  \sin(90 -  \alpha )}

And,

 \bold{\sin( \alpha )  =  \cos(90 -  \alpha ) }

Therefore,

We get,

 =  \frac{ \sin(40) }{ \sin(90 - 50) }  +  \frac{ \cos(40) }{ \cos(90 - 50) }  \\  \\  =  \frac{ \sin(40) }{ \sin(40) }  +  \frac{ \cos(40) }{ \cos(40) }  \\  \\ =  1 + 1 \\  \\  = 2

= R.H.S

Hence,

  • L.H.S = R.H.S

Thus, Proved

Similar questions