prove that sec^6-tan^6=1+3sec^2xtan^2x
Answers
Answered by
1
Solution :
****************************************
We know the algebraic identity:
a³ - b³ - 3ab( a - b ) = ( a - b )³
Or
a³ - b³ = ( a - b )³ + 3ab( a - b )
and
we know the Trigonometric identity :
Sec²x - tan² x = 1
**************************************
Here
LHS = sec^6 x - tan^6 x
= ( sec²x )³ - ( tan²x )³
= ( sec²x-tan²x)³+3sec²xtan²x(sec²x-tan²x)
= 1 + 3sec²xtan²x
=RHS
•••••
****************************************
We know the algebraic identity:
a³ - b³ - 3ab( a - b ) = ( a - b )³
Or
a³ - b³ = ( a - b )³ + 3ab( a - b )
and
we know the Trigonometric identity :
Sec²x - tan² x = 1
**************************************
Here
LHS = sec^6 x - tan^6 x
= ( sec²x )³ - ( tan²x )³
= ( sec²x-tan²x)³+3sec²xtan²x(sec²x-tan²x)
= 1 + 3sec²xtan²x
=RHS
•••••
Similar questions