Math, asked by ritikroshanparida, 10 months ago

prove that. (sec A + tan A) (1- sin A) = cos A​

Answers

Answered by Brâiñlynêha
24

Prove !

(secA + tanA ) (1- sinA) = cos A

\sf \bullet sec A= \dfrac{1}{cosA}\\ \\ \sf \bullet tan\ A= \dfrac{sinA}{cosA} \\ \\ :\implies\sf \bigg(\dfrac{1}{cosA}+\dfrac{sinA}{cosA}\bigg)\times \bigg(1-sinA\bigg)\\ \\ :\implies\sf \dfrac{(1+sinA)\times (1-sinA)}{cosA}\\ \\ \sf \bullet \ It\ is \ in \ form \ of :-\\ \\ \sf \ \ a^2-b^2= (a+b)(a-b) \\ \\  :\implies\sf \dfrac{(1-sin^2A)}{cosA}\\ \\ \bullet \sf \ 1-sin^2A= cos^2A\\ \\ :\implies \sf \cancel{\dfrac{cos^2A}{cosA}}\\ \\ :\implies \sf cosA \\ \\ :\implies\sf cosA= cosA \\ \\ \sf \ \ L. H.S = R.H.S \ \ (hence \ proved \ !)


Anonymous: awesome ♥️ ♥️♥️
Answered by Anonymous
17

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

{\star{\sf{\green{ (secA + tanA)(1 - sinA) = cosA}}}}

{\sf{\underline{\green{Now,}}}}

Take L.H.S,

\diamond{\bf{\blue{we \: know \: that}}} \\

 \boxed{\tt{secA =  \frac{1}{cosA} }} \\  \\

 \boxed{\tt{tanA =  \frac{sinA}{cosA} }} \\  \\

 \implies{\tt{ \bigg(  \frac{1}{cosA}  +  \frac{sinA}{cosA} \bigg) (1 - sinA)}} \\  \\

 \implies{\tt{ \bigg(  \frac{1 + sinA}{cosA}   \bigg) (1 - sinA)}} \\  \\

 \implies{\tt{ \bigg(  \frac{1}{cosA}   \bigg) (1 + sinA)(1 - sinA)}} \\  \\

\implies{\tt{ \bigg(  \frac{1}{cosA}   \bigg) ( {1}^{2}  - sinA^{2} )}} \\  \\

 \because\boxed{\tt{ {a}^{2}  -  {b}^{2}  = (a - b)(a + b) }} \\  \\

\implies{\tt{ \bigg(  \frac{1}{cosA}   \bigg) ( cosA^{2} )}} \\  \\

\implies{\tt{   cosA }} \\  \\

 \boxed{\tt{ \purple{Hence \: L.H.S=R.H.S}}} \\  \\


Anonymous: perfect
Similar questions