Math, asked by shrutii5, 7 months ago

Prove that: (sec A+ tan A- 1)/(tan A- sec A+1) = cos A/(1 - sin A)​

Answers

Answered by khannas918
0

Step-by-step explanation:

Please refer to the attachment below

But I think the question u have put is wrong

Please refer to the attachment for that

Hope it helps

Mark it as the brainliest

Attachments:
Answered by BrainlyIAS
8

LHS

:\implies  \sf \dfrac{sec\ A+tan\ A-1}{tan\ A-sec\ A+1}

  • sec²A - tan²A = 1

:\implies \sf \dfrac{sec\ A+tan\ A-(sec^2A-tan^2A)}{tan\ A-sec\ A+1}

  • a² - b² = (a+b)(a-b)

\\ :\implies \sf \dfrac{(sec\ A+tan\ A)-[(sec\ A+tan\ A)(sec\ A-tan\ A)]}{tan\ A-sec\ A+1} \\

\\ :\implies \sf \dfrac{(sec\ A+tan\ A)(1-(sec\ A-tan\ A))}{1-sec\ A+tan\ A} \\

\\ :\implies \sf \dfrac{(sec\ A+tan\ A)(1-sec\ A+tan\ A)}{1-sec\ A+tan\ A} \\

\\ :\implies \sf \dfrac{(sec\ A+tan\ A)\cancel{(1-sec\ A+tan\ A)}}{\cancel{1-sec\ A+tan\ A}} \\

:\implies \sf sec\ A+tan\ A

:\implies \sf \dfrac{1}{cos\ A}+\dfrac{sin\ A}{cos\ A}

:\implies \sf \dfrac{1+sin\ A}{cos\ A}

Rationalize the numerator

:\implies \sf \dfrac{1+sin\ A}{cos\ A}\times \dfrac{1-sin\ A}{1-sin\ A}

  • (a+b)(a-b) = a² - b²

:\implies \sf \dfrac{1-sin^2A}{cos\ A(1-sin\ A)}

  • ( 1 - sin²A ) = cos²A

:\implies \sf \dfrac{cos^2A}{cos\ A(1-sin\ A)}

:\implies \sf \dfrac{cos\ A}{1-sin\ A}

RHS

Similar questions