prove that √
= sec A + tan A
Answers
Answered by
0
Step-by-step explanation:
864
Question Bank Solutions 25930
Concept Notes & Videos 230
Time Tables 15
Syllabus
Advertisement Remove all ads
Sum
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
SOLUTION
L.H.S. = `sqrt(((1 - sin θ)(1 - sin θ))/((1 + sin θ)(1 - sin θ)))`
= `sqrt((1 + sin^2θ - 2sinθ)/(1 - sin^2θ)`
= `sqrt((1 + sin^2θ - 2sinθ)/(cos^2θ)`
= `sqrt( 1/cos^2θ + sin^2θ/cos^2θ - (2sin θ)/cos θ xx 1/cosθ`
= `sqrt( sec^2θ + tan^2 θ - 2 tan θ. sec θ)`
= `sqrt((sec θ - tan θ)^2)`
= sec θ - tan θ
= R.H.S.
Hence proved.
Answered by
1
Answer
(1−sinA)
(1+sinA)
×
(1+sinA)
(1+sinA)
=
1−sin
2
A
(1+sinA)
2
=
cos
2
A
(1+sinA)
2
=
cosA
1+sinA
=
cosA
1
+
cosA
sinA =secA+tanA
Hence proved.
Flw_me!
Similar questions
Social Sciences,
1 month ago
Social Sciences,
1 month ago
Math,
2 months ago
Biology,
9 months ago
English,
9 months ago