prove that (sec A + tanA)(1 - sinA)= cosA
Answers
Answered by
1
Answer:
To prove : (\sec A+\tan A)(1-\sin A)=\cos A(secA+tanA)(1−sinA)=cosA
Proof :
Taking LHS,
LHS=(\sec A+\tan A)(1-\sin A)LHS=(secA+tanA)(1−sinA)
Write, \sec A=\frac{1}{\cos A}\ , \tan A=\frac{\sin A}{\cos A}secA=
cosA
1
,tanA=
cosA
sinA
LHS=(\frac{1}{\cos A}+\frac{\sin A}{\cos A})(1-\sin A)LHS=(
cosA
1
+
cosA
sinA
)(1−sinA)
LHS=(\frac{1+\sin A}{\cos A})(1-\sin A)LHS=(
cosA
1+sinA
)(1−sinA)
LHS=\frac{(1+\sin A)(1-\sin A)}{\cos A}LHS=
cosA
(1+sinA)(1−sinA)
LHS=\frac{1^2-\sin^2 A}{\cos A}LHS=
cosA
1
2
−sin
2
A
LHS=\frac{1-\sin^2 A}{\cos A}LHS=
cosA
1−sin
2
A
LHS=\frac{\cos^2 A}{\cos A}LHS=
cosA
cos
2
A
LHS=\cos ALHS=cosA
LHS=RHSLHS=RHS
Hence proved.
Similar questions