Math, asked by chauhankabeer666, 3 months ago

Prove that :( secθ + tanθ) (1 - sinθ) = cosθ​

Answers

Answered by Anonymous
41

\bf \large \implies{ \green{L.H.S}=  (sec \:  \theta + tan \:  \theta ) \: (1 - sin  \: \theta)} \\ \\

\bf \large\implies{  = \Huge [ } \:  \large{\dfrac{1}{cos \: \theta}  +  \dfrac{sin \:  \theta}{cos \:  \theta}} \: {\Huge]} \bf \large{(1 - sin \:  \theta)} \\  \\

 \bf \large \implies  =  \dfrac{(1 + sin \:  \theta)}{cos \:  \theta}  \: (1 -  \: sin \:  \theta) \\  \\

\bf \large \implies{ =  \dfrac{1 -  {sin}^{2}   \: \theta}{cos \:  \theta} } \:  \: \: \: \purple{ ... \: [\: (a + b)(a - b) =  {a}^{2} \:  -  \:  {b}^{2}]} \\  \\

\bf \large\implies  = \dfrac{ {cos}^{2} \:  \theta}{ {cos}^{2} \:  \theta} \:  \:  \:  \:  \:  \: \: \:  \:  \:  \: \: \large \binom{ { sin}^{2} \:  \theta +  {cos}^{2}  \:  \theta = 1 \: }{ 1 -  {sin}^{2} \:  \theta =  {cos} \:  \theta\: } \\  \\

\bf \large \implies{ = cos \:  \theta}\\  \\

\bf \large \implies =  \green  {{ R.H.S}}\\  \\

\bf \large \red{\therefore(sec \:  \theta \:  +  \: tan \:  \theta)(1 - sin \:  \theta) = cos \:  \theta}


Anonymous: Fantastic : Nice : Beautiful : Handsome : Praiseworthy : Appreciatable : Perfect : Mind Blowing : Great : Awesome Answer !
Anonymous: Fantastic : Nice : Beautiful : Handsome : Praiseworthy : Appreciatable : Perfect : Mind Blowing : Great : Awesome Answer :)
Anonymous: Fantastic : Nice : Beautiful : Handsome : Praiseworthy : Appreciatable : Perfect : Mind Blowing : Great : Awesome Answer :-)
Similar questions