Prove that sec + tan = cos/1-sin
Answers
Answered by
5
Please mark as brainliest
Please please please please
Answer:
LHS=secA+tanA RHS= cos/(1-sinA)
Step-by-step explanation:
Taking, LHS=
as, {secA=1/cosA} and {tanA=sinA/cosA}
=(1/cosA)+(sinA/cosA)
=(1+sinA)/cosA
on Rationalising denominator;
=[(1+sinA)/cosA]×[cosA/cosA]
=[(1+sinA)cosA]÷cos²A
as, sin²A+cos²A=1
=[(1+sinA)cosA]÷(1-sin²A)
using identity, a²–b²=(a+b)(a-b)
=[(1+sinA)cosA]÷[(1+sinA)(1-sinA)]
=cos/1-sinA
Hence, proved
Answered by
4
Answer:
hey buddy
taking R.H.S.
We have, cosx.
1−sinx ,
= cosx. × 1,
1−sinx
= cosx. × 1 + sinx
1−sinx. 1 + sinx
= cosx( 1 + sinx )
1−sin^2x
= 1 + sinx
cosx
= 1. +. sinx
cosx. cosx
= secx + tanx, as desired!
hope it helped uhh
Similar questions
Biology,
5 months ago
Computer Science,
5 months ago
World Languages,
11 months ago
English,
11 months ago
Physics,
1 year ago
Science,
1 year ago