Geography, asked by UnknownCrasher7992, 1 year ago

Prove that sec theta minus tan theta minus one upon tan theta minus sec theta + 1 is equal to 1 + sin theta upon cos theta is equal to cos theta upon 1 minus sin theta

Answers

Answered by pallavikulthe285
1

Numerator = tan theta + sec theta -1

= sin theta/cos theta + 1/cos theta - 1

= (sin theta + 1)/cos theta -1


denominator = (sin theta -1)/cos theta +1


multiply both by cos theta


numerator = sin theta +1 - cos theta

= 2 sin theta/2 cos theta/2 + 2 sin^ theta/2


denominator = 2 sin theta/2 cos theta/2 - 2 sin ^2 theta/2


divide


number = (cos theta/2 + sin theta/2)/(cos theta/2 - sin theta/2)


= (cos theta/2 + sin theta/2)^2/(cos^2 theta/2- sin ^2 theta/2)

= (cos^2 theta/2+ sin^2 theta/2 + 2 cos theta/2 sin theta/2)/(cos theta)

= (1+ sin theta)/ cos theta

= sec theta+ tan theta

Hence Proved

Answered by ak3057955
0

Answer:

Explanation:

Numerator = tan theta + sec theta -1

= sin theta/cos theta + 1/cos theta - 1

= (sin theta + 1)/cos theta -1

denominator = (sin theta -1)/cos theta +1

multiply both by cos theta

numerator = sin theta +1 - cos theta

= 2 sin theta/2 cos theta/2 + 2 sin^ theta/2

denominator = 2 sin theta/2 cos theta/2 - 2 sin ^2 theta/2

divide

number = (cos theta/2 + sin theta/2)/(cos theta/2 - sin theta/2)

= (cos theta/2 + sin theta/2)^2/(cos^2 theta/2- sin ^2 theta/2)

= (cos^2 theta/2+ sin^2 theta/2 + 2 cos theta/2 sin theta/2)/(cos theta)

= (1+ sin theta)/ cos theta

= sec theta+ tan theta

Hence Proved

Similar questions