Math, asked by hacker3939, 7 months ago

prove that sec theta - sin theta tan theta = cos theta​

Attachments:

Answers

Answered by abhi569
2

Step-by-step explanation:

Knowing the facts, 1/secA = cosA

; tanA = sinA/cosA, given expression is:

=> secA - sinAtanA

=> 1/cosA - sinA(sinA/cosA)

=> 1/cosA - sin²A/cosA

=> (1 - sin²A)/cosA

=> (cos²A)/cosA {1 - sin²A = cos²A}

=> cosA

Answered by Bᴇʏᴏɴᴅᴇʀ
4

Answer:-

To Prove:-

\sf sec \theta - sin \theta tan \theta = cos \theta

Solution:-

\sf sec \theta - sin \theta tan \theta = cos \theta

Taking L.H.S:-

We know,

\pink{\bigstar} \boxed{\sf sec \theta = \dfrac{1}{cos \theta}}

\pink{\bigstar} \boxed{\sf tan \theta = \dfrac{sin \theta}{cos \theta}}

Now,

\sf \dfrac{1}{cos \theta} - sin \theta \times \dfrac{sin \theta}{cos \theta}

\sf \dfrac{1}{cos \theta} - \dfrac{sin^2 \theta}{cos \theta}

Taking LCM:-

\sf \dfrac{1 - sin^2 \theta}{cos \theta}

We know,

\pink{\bigstar} \boxed{\sf 1 - sin^2 \theta = cos^2 \theta}

\sf \dfrac{cos^2 \theta}{cos \theta}

\bf\large\blue{cos \theta}

R.H.S = \bf\large\blue{cos \theta}

\bf\large\green{cos \theta = cos \theta}

L.H.S = R.H.S

Hence Proved★

Similar questions