prove that sec0+tan0=cos0/1-sin0
Answers
Step-by-step explanation:
LHS=sec0+tan0
=(1/cos0)+(sin0/cos0)
=(1+sin0)/cos0
=(1-sin^20)/{cos0(1-sin0)}
=cos^20/{cos0(1-sin0)}
=cos0/1-sin0
=RHS
MATHS ARYABHATA HERE
YOUR ANSWER:-
sec0+tan0
LHS=sec0+tan0 =(1/cos0)+(sin0/cos0)
LHS=sec0+tan0 =(1/cos0)+(sin0/cos0) =(1+sin0)/cos0
LHS=sec0+tan0 =(1/cos0)+(sin0/cos0) =(1+sin0)/cos0 =(1-sin^20)/{cos0(1-sin0)}
LHS=sec0+tan0 =(1/cos0)+(sin0/cos0) =(1+sin0)/cos0 =(1-sin^20)/{cos0(1-sin0)} =cos^20/{cos0(1-sin0)}
LHS=sec0+tan0 =(1/cos0)+(sin0/cos0) =(1+sin0)/cos0 =(1-sin^20)/{cos0(1-sin0)} =cos^20/{cos0(1-sin0)} =cos0/1-sin0
LHS=sec0+tan0 =(1/cos0)+(sin0/cos0) =(1+sin0)/cos0 =(1-sin^20)/{cos0(1-sin0)} =cos^20/{cos0(1-sin0)} =cos0/1-sin0 =RHS
#BE BRAINLY
SMART SOLVER.....