Math, asked by ssridevisn, 10 months ago

Prove that √sec2θ + cosec2θ = tan θ + cot θ .

Answers

Answered by BrainlyPopularman
9

TO PROVE :

 \\ \implies { \bold{ \sqrt{ { \sec}^{2}  \theta + {cosec}^{2} \theta } =  \tan( \theta) +  \cot( \theta) }}  \\

SOLUTION :

• Let's take L.H.S. –

 \\ \:  \:  =  \:  \: { \bold{ \sqrt{ { \sec}^{2}  \theta + {cosec}^{2} \theta }}}  \\

▪︎ Using identity –

 \\ \:  \:  \dashrightarrow\:  \: { \bold{ { \sec}^{2}  \theta = 1 +  { \tan}^{2} \theta}}  \\

 \\ \:  \:  \dashrightarrow\:  \: { \bold{ { cosec}^{2}  \theta = 1 +  { \cot}^{2} \theta}}  \\

• So that –

 \\ \:  \:  =  \:  \: { \bold{ \sqrt{1 +  { \tan}^{2} \theta+1 +  { \cot}^{2} \theta}}}  \\

 \\ \:  \:  =  \:  \: { \bold{ \sqrt{ { \tan}^{2} \theta+2+  { \cot}^{2} \theta}}}  \\

• We should write this as –

 \\ \:  \:  =  \:  \: { \bold{ \sqrt{ { \tan}^{2} \theta+2 \tan \theta \cot \theta  +  { \cot}^{2} \theta}}}  \\

• Using identity –

 \\ \:  \:  \dashrightarrow\:  \: { \bold{ {a}^{2} + 2ab +  {b}^{2}  = {(a + b)}^{2} }}  \\

 \\ \:  \:  =  \:  \: { \bold{ \sqrt{{( \tan \theta +  \cot \theta )}^{2}}}}  \\

 \\ \:  \:  =  \:  \: { \bold{  \tan \theta +  \cot \theta }}  \\

 \\ \:  \:  =  \:  \: { \bold{R.H.S. }}  \\

 \\ \: \: \: \: \: { \underbrace{ \bold{Hence \:  \: proved }}}  \\

Answered by MaIeficent
23

Step-by-step explanation:

{\red{\underline{\underline{\bold{To\:Prove:-}}}}}

\sqrt{ \sec2 \theta +   \cosec2 \theta }  =  \tan \theta +  \cot \theta

{\green{\underline{\underline{\bold{Proof:-}}}}}

\sqrt{ \sec2 \theta +   \cosec2 \theta }  =  \tan \theta +  \cot \theta

As we know that:-

\sec \theta =  \frac{1}{ \cos \theta } \\\\</p><p></p><p> \cosec \theta =  \frac{1}{  \sin \theta }

L.H.S = \sqrt{ \sec2 \theta +   \cosec2 \theta }\\\\ </p><p></p><p>= \sqrt{ \frac{1}{ { \cos }^{2} \theta} +  \frac{1}{ { \sin }^{2}  \theta}  }  \\\\</p><p></p><p>= \sqrt{ \frac{ { \sin }^{2} \theta +  { \cos}^{2} \theta  }{ { (\sin }^{2} \theta) ( { \cos }^{2}  \theta)} } \\\\</p><p></p><p>= \sqrt{ \frac{ 1  }{ { \sin }^{2} \theta. { \cos }^{2}  \theta} }  \:  \:  \: ( \therefore { \sin }^{2}  \theta +  { \cos }^{2}  \theta = 1) \\\\ </p><p></p><p>=   \frac{1}{ \sin \theta. \cos \theta } \\\\</p><p></p><p>=   \frac{ { \sin }^{2} \theta +  { \cos }^{2}  \theta }{ \sin \theta. \cos \theta } \\\\</p><p></p><p>=  \frac{ \sin \theta. \sin \theta  }{ \sin\theta. \cos \theta} +   \frac{ \cos \theta. \cos \theta  }{ \sin\theta. \cos \theta} \\\\</p><p></p><p>=  \frac{ \sin \theta  }{  \cos \theta} +   \frac{  \cos \theta  }{ \sin\theta} \\\\</p><p></p><p>=  \tan \theta +  \cot \theta

{\purple{\underline{\underline{\bold{Hence\:Proved}}}}}

Similar questions