Math, asked by artikumari8653, 10 months ago

Prove that : Sec²∅ - Cot² (90° - ∅) = Cos²(90° - ∅) + Cos²∅.

Answers

Answered by adn9262ansari
0

Step-by-step explanation:

it will be helpful for you

Attachments:
Answered by Anonymous
40

\huge\underline\mathrm{SOLUTION:-}

\mathsf {L.H.S =  \sec {}^{2} (\theta)  -  \cot {}^{2} (\theta) (90 - \theta)}

\mathsf {=  \sec {}^{2} (\theta)  -  \tan {}^{2} (\theta) }

\mathsf { =  \frac{1}{ \cos {}^{2} (\theta) }  -  \frac{ \sin {}^{2} (\theta) }{ \cos {}^{2} (\theta) }}

\mathsf { =  \frac{( -  \sin {}^{2} (\theta)) }{ \cos {}^{2} (\theta) } }

\mathsf { =  \frac{ \cos {}^{2} (\theta) }{ \cos {}^{2} (\theta) }  = 1}

\mathsf {R.H.S\:  =  \cos {}^{2} (90 - \theta)  +  \cos {}^{2} \theta)}

\mathsf { \sin {}^{2} (\theta)  +  \cos {}^{2} (\theta) }

\mathsf {= 1}

\mathsf \red{L.H.S = R.H.S}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions