Prove that :- sec2A+cosec2A=sec2A.cosec2A
Answers
Answered by
4
HOlla mate,
Here ur answer.
LHS = sec²A +cosec²A
=> 1/cos²A + 1/sin²A
=> (sin²A +cos²A)/(cos²Asin²A)
so,
=>1/(cos²Asin²A) {since sin²A +cos²A =1}
=> 1/cos²A *1/sin²A
=>sec²A cosec²A
Which is equal to RHS
Here ur answer.
LHS = sec²A +cosec²A
=> 1/cos²A + 1/sin²A
=> (sin²A +cos²A)/(cos²Asin²A)
so,
=>1/(cos²Asin²A) {since sin²A +cos²A =1}
=> 1/cos²A *1/sin²A
=>sec²A cosec²A
Which is equal to RHS
sundarsamrat1:
tqsm
Answered by
4
First taking LHS
sec2A +cosec2A
=1/cos2A + 1/sin2A
=(sin2A +cos²A)/(cos2Asin2A)
=1/(cos2Asin2A) {because sin2A +cos2A =1}
= 1/cos2A *1/sin2A
=sec2A cosec2A which is equal to RHS
hence proof .Mark it brainliest
Similar questions