Prove that √sec²A+cosec²A = tanA +cotA.
Answers
Answered by
14
LHS
Root over sec^2+cosec^2
=1/cos^2 + 1/sin^2
=(sin^2+cos^2)/(cos^2sin^2) LCM
=root over 1/cos^2sin^2
=1/cosAsinA
Rhs
tanA+cotA
=sin/cos + cos/sin
= (sin^2 +cos^2)/cosAsinA
=1/cosAsinA
LHS=RHS
Root over sec^2+cosec^2
=1/cos^2 + 1/sin^2
=(sin^2+cos^2)/(cos^2sin^2) LCM
=root over 1/cos^2sin^2
=1/cosAsinA
Rhs
tanA+cotA
=sin/cos + cos/sin
= (sin^2 +cos^2)/cosAsinA
=1/cosAsinA
LHS=RHS
Triyan:
thank you for thanking me!
Answered by
33
Hello users ...
-----------------------------------------------------
We know that:
sec²x = 1 + tan²x
And
cosec²x = 1 + cot²x
And
tan x .cot x = 1
Solution:-
Taking LHS..
= √(sec²A + cosec²A)
= √ { (1 + tan²A) + ( 1 + cot²A) }
= √ ( tan²A + cot²A + 2)
= √ ( tan²A + cot²A + 2 tan A .cot A )
Using
(a² + b² +2ab) = (a + b)²
= √(tan A + cot A)²
= tan A + cot A = RHS
Hence;
Proved √ (sec²A+cosec²A) = tan A + cot A
-----------------------------------------------------------------------------
Hope it helps :)
-----------------------------------------------------
We know that:
sec²x = 1 + tan²x
And
cosec²x = 1 + cot²x
And
tan x .cot x = 1
Solution:-
Taking LHS..
= √(sec²A + cosec²A)
= √ { (1 + tan²A) + ( 1 + cot²A) }
= √ ( tan²A + cot²A + 2)
= √ ( tan²A + cot²A + 2 tan A .cot A )
Using
(a² + b² +2ab) = (a + b)²
= √(tan A + cot A)²
= tan A + cot A = RHS
Hence;
Proved √ (sec²A+cosec²A) = tan A + cot A
-----------------------------------------------------------------------------
Hope it helps :)
Similar questions