prove that sec²A - {(sin²A - 2sin⁴A)/(2cos⁴A - cos²A)} = 1
Answers
Answered by
1
Answer:
Sin²A + Cos²A = 1
Step-by-step explanation:
= Sec²A - {Sin²A(Cos2A)/Cos²A(Cos2A) }
{ Cos2A = (2Cos²A - 1) = (1 - 2Sin²A) }
= Sec²A - (Sin²A/Cos²A)
= Sec²A - tan²A
= 1 + tan²A - tan²A
= 1
Hence proof
Similar questions