Prove that sec2theta-cos2theta=sin2theta(sec2theta+1)
Answers
To prove---> Sec²θ - Cos²θ = Sin²θ ( Sec²θ + 1 )
Proof---> LHS = Sec²θ - Cos²θ
We know that Cosθ = 1 / Secθ , applying it here we get,
= Sec²θ - ( 1 / Sec²θ )
Taking Sec²θ as LCM , we get,
= ( Sec⁴θ - 1 ) / Sec²θ
= { ( Sec²θ )² - ( 1 )² } / Sec²θ
We have an identity , a² - b² = ( a + b ) ( a - b ) , applying it here , we get ,
= ( Sec²θ + 1 ) ( Sec²θ - 1 ) / Sec²θ
Putting Sec²θ - 1 = tan²θ , we get,
= ( Sec²θ + 1 ) tan²θ ( 1 / Sec²θ )
We know that , tanθ = Sinθ / Cosθ and
Cosθ = 1 /Secθ , applying it here , we get.
= ( Sec²θ + 1 ) ( Sin²θ / Cos²θ ) Cos²θ
= ( Sec²θ + 1 ) Sin²θ
= Sin²θ ( Sec²θ + 1 ) = RHS
#Answerwithquality
#BAL
Answer:
Step-by-step explanation:
To prove---> Sec²θ - Cos²θ = Sin²θ ( Sec²θ + 1 )
Proof---> LHS = Sec²θ - Cos²θ
We know that Cosθ = 1 / Secθ , applying it here we get,
= Sec²θ - ( 1 / Sec²θ )
Taking Sec²θ as LCM , we get,
= ( Sec⁴θ - 1 ) / Sec²θ
= { ( Sec²θ )² - ( 1 )² } / Sec²θ
We have an identity , a² - b² = ( a + b ) ( a - b ) , applying it here , we get ,
= ( Sec²θ + 1 ) ( Sec²θ - 1 ) / Sec²θ
Putting Sec²θ - 1 = tan²θ , we get,
= ( Sec²θ + 1 ) tan²θ ( 1 / Sec²θ )
We know that , tanθ = Sinθ / Cosθ and
Cosθ = 1 /Secθ , applying it here , we get.
= ( Sec²θ + 1 ) ( Sin²θ / Cos²θ ) Cos²θ
= ( Sec²θ + 1 ) Sin²θ
= Sin²θ ( Sec²θ + 1 ) = RHS