prove that =sec4a-1/sec2a-1=tan4a*cota
Answers
Answer:
This is the answer
I hope can I help you
Answer:
sec4A -1 / sec2A-1
= 1/ cos4A - 1 / 1/cos2A -1
= (1- cos4A ) . cos2A / cos4A (1- cos2A )
= 2 sin2 2A . cos2A / cos4A . 2 sin2 A
= 2 sin2A cos2A . sin2A / cos4A . 2sin2 A
= sin4A . 2 sinA cosA / cos4A . 2 sin2 A
= tan4A / tanA
=tan4A. cotA
Step-by-step explanation:
[sec(4A) - 1) /[sec(2A) - 1] = tan(4A) cotA
let's rewrite sec(4A) as 1 /cos(4A), sec(2A) as 1 /cos(2A), tan(4A) as sin(4A) /cos(4A) and cotA as cosA /sinA:
{[1 /cos(4A)] - 1} /{[1 /cos(2A)] - 1} = [sin(4A) /cos(4A)] (cosA /sinA)
{[1 - cos(4A)] /cos(4A)} /{[1 - cos(2A)] /cos(2A)} =
[sin(4A) /cos(4A)] (cosA /sinA)
{[1 - cos(4A)] /cos(4A)} {cos(2A) /[1 - cos(2A)]} =
[sin(4A) /cos(4A)] (cosA /sinA)
let's apply (to both 1 - cos(4A) and 1 - cos(2A) ) the half-angle formula sin²(θ/2) = (1 - cosθ) /2 (hence 1 - cosθ = 2sin²(θ/2) ):
{{2sin²[(4A)/2]} /cos(4A)} {cos(2A) /{2sin²[(2A)/2]}} =
[sin(4A) /cos(4A)] (cosA /sinA)
{[2sin²(2A)] /cos(4A)} [cos(2A) /(2sin²A)] =
[sin(4A) /cos(4A)] (cosA /sinA)
{[2sin²(2A) cos(2A)] /cos(4A)} [1 /(2sin²A)] =
[sin(4A) /cos(4A)] (cosA /sinA)
{{[2sin(2A) cos(2A)] sin(2A)} /cos(4A)} [1 / (2sin²A)] =
[sin(4A) /cos(4A)] (cosA /sinA)
let's apply (to 2sin(2A) cos(2A) ) the double-angle formula 2sinθ cosθ = sin(2θ):
{{sin[2(2A)] sin(2A)} /cos(4A)} [1 /(2sin²A)] =
[sin(4A) /cos(4A)] (cosA /sinA)
[sin(4A) /cos(4A)] [sin(2A) /(2sin²A)] =
[sin(4A) /cos(4A)] (cosA /sinA)
let's apply again (to sin(2A) ) the double-angle forrmula sin(2θ) =
2sinθ cosθ:
[sin(4A) /cos(4A)] [(2sinA cosA) /(2sin²A)] =
[sin(4A) /cos(4A)] (cosA /sinA)
simplifying to:
[sin(4A) /cos(4A)] (cosA /sinA) = [sin(4A) /cos(4A)] (cosA /sinA) (proved)
I hope it's helpful