Prove that
sec8A-1/sec 4A - 1=cot 2A/cot8A
Answers
Answered by
1
Answer:
Step-by-step explanation:
L.H.S:
sec8A - 1 / sec4A - 1
=> [1 - cos8A / cos8A] / [1 - cos4A/cos4A]
=> [cos4A/cos8A] [ 1 - cos8A / 1 - cos4A ]
//remember cos2A = cos²A - sin²A = 1 - 2sin²A
=> [cos4A/cos8A] [ 1 - (1 - 2sin²4A) / 1 - (1 - 2sin²2A)]
=> [cos4A/cos8A] [ 2sin²4A / 2sin²2A]
=> (2sin4A.cos4A) (sin4A) / (2sin2A.cos8A)(sin2A)
//remember 2sinAcosA = sin2A
=> sin8Asin4A / (2sin²2A.cos8A)
=> (sin8A/cos8A) (sin4A/2sin²2A)
//remember sin2A = 2sinAcosA
=> tan8A * (2sin2Acos2A/2sin²2A)
=> tan8A * (cos2A/sin2A)
=> tan8A * cot2A
//remember cotA = 1/TanA
=> cot2A/cot8A
=> R.H.S
Hence proved.
Similar questions