Math, asked by aarohi70, 1 year ago

Prove that:

(sec8x - 1)÷(sec4x - 1) = tan8x/tan2x ?

☑No spamming☑​

Answers

Answered by Anonymous
111

Answer:

(sec8x - 1)÷(sec4x - 1) = tan8x/tan2x

✔️Hope it will be helpful.✔️

Attachments:
Answered by sahildhande987
26

\huge\star{\underline{\boxed{\red{\tt{Answer}}}}}\star

\large{\bold{ \frac{sec8x-1}{sec4x-1}=\frac{tan8x}{tan2x}}}

________________________________

\huge\star\star\star\star\star\star\star\star\star\star

LHS

 \frac{ \sec(8x) - 1 }{ \sec(4x) - 1 }  \\  \\  =  \frac{ \frac{1}{  \cos(8x)  } - 1 }{ \frac{1}{ \cos(4x) } - 1 }  \\  \\  =  \frac{1 -  \cos(8x) }{ \cos(8x) }  \times   \frac{ \cos(4x) }{1 -  \cos(4x) }  \\  \\  =  \frac{2 {  { \sin}^{2} (4x) } }{ \cos(8x) }  \times  \frac{ \cos(4x) }{2 {\sin}^{2}(2x) }

\huge\huge\star\star\star\star ____________________________________

\\  \\ since \: we \: know \: that \:  \\ 1 -  \cos(8x)  = 2 { \sin}^{2} ( \frac{8x}{2} ) = 2  { \sin}^{2} (4x) \\ and \\ 1 -  \cos(4x)  = 2 { \sin}^{2}( \frac{4x}{2} ) = 2 { \sin}^{2} (2x) \\  \\ </p><p><strong> </strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong>_</strong><strong> </strong></p><p></p><p>[tex] \frac{2 \sin(4x) \cos(4x)  }{ \cos(8x) }  \times  \frac{ \sin(4x) }{2 { \sin}^{2} (2x)}  \\  \\  = ( \frac{2 \sin(4x) \cos(4x)  }{ \cos(8x) } ) \times  \frac{ \sin(4x) }{2 { \sin }^{2} (2x)}  \\  \\  = ( \frac{2 \sin(4x)  \cos(4x) }{ \cos(8x) } ) \times  \frac{ \sin(4x) }{2 { \sin}^{2} (x)}  \\  \\ ( \frac{2 \sin(4x) \cos(4x)  }{ \cos(8x) } ) \times ( \frac{2 \sin(2x) \cos(2x)  }{2 { \sin}^{2} (2x)} ) \\  \\  = ( \frac{ \sin2(4x) }{ \cos(8x) } ) \times  \frac{ \cos(2x) }{ \sin(2x) }  \\  \\  = ( \frac{ \sin(8x) }{ \cos(8x) }  \times  \frac{ \cos(2x) }{ \sin(2x) }  \\  \\  =  \tan(8x)  \cot(2x)  \\  \\  =  \frac{ \tan(8x) }{ \tan(2x) }  \\  \\

\huge\star\star\star\star\star\star\star\star\star\star

Similar questions