Math, asked by gauravgautam67941, 5 months ago

Prove that secA (1- SinA) (secA + tanA) =1

Answers

Answered by ankita13032
1

Answer:

hence proved ,

secA ( 1-sinA) (secA+tanA) =1

Step-by-step explanation:

secA(1-sinA)(secA+tanA)=1

LHS =secA(1-sinA)(secA+tanA)

=(1/cosA)(1-sinA)( (1/cosA)+(sinA/cosA)

=(1-sinA)( (1+sinA)/(cos²A)

=(1-sin²A)/(cos²A)=cos²A/cos²A=1 = RHS

Answered by MizZFaNtAsY
1

LHS

secA(1-sinA)(secA+tanA)  \\  \\  =  \frac{1}{cosA} (1-sinA)(secA+tanA)  \\  \\ = ( \frac{1}{cosA} - \frac{ sinA}{cosA} )(secA+tanA)  \\  \\ = (secA-tanA)(secA+tanA) \\  \\  =  {sec}^{2} A -  {tan}^{2} A\\  \\  = 1

RHS

=1

LHS=RHS

Similar questions