Math, asked by aqibbalti72, 2 months ago

Prove that secA (1 - sinA) (secA + tanA) = 1​

Answers

Answered by MizBroken
20

Proof

Let us start with LHS

= (secA-sinA×secA)(secA+tanA)

=(secA-tanA) (secA+tanA) { secA=1/cosA and sinA/cosA=tanA}

= (sec²A-tan²A) { (a+b)(a-b)=a²-b²}

=sec²A-tan²A

=1

= RHS {using identity}

Hence proved.

✪============♡============✿

 \huge \pink{✿} \red {C} \green {u} \blue {t} \orange {e}  \pink {/} \red {Q} \blue {u} \pink {e} \red {e} \green {n} \pink {♡}

Answered by SamrudhiDalvi
1

Answer:

Let us start with LHS

= (secA-sinA×secA)(secA+tanA)

=(secA-tanA) (secA+tanA) { secA=1/cosA and sinA/cosA=tanA}

= (sec²A-tan²A) { (a+b)(a-b)=a²-b²}

=sec²A-tan²A

=1

= RHS {using identity}

Hence proved.

" Hope it helps :) "

Similar questions