Prove that secA (1 - sinA) (secA + tanA) = 1
Answers
Answered by
20
Proof
Let us start with LHS
= (secA-sinA×secA)(secA+tanA)
=(secA-tanA) (secA+tanA) { secA=1/cosA and sinA/cosA=tanA}
= (sec²A-tan²A) { (a+b)(a-b)=a²-b²}
=sec²A-tan²A
=1
= RHS {using identity}
Hence proved.
✪============♡============✿
Answered by
1
Answer:
Let us start with LHS
= (secA-sinA×secA)(secA+tanA)
=(secA-tanA) (secA+tanA) { secA=1/cosA and sinA/cosA=tanA}
= (sec²A-tan²A) { (a+b)(a-b)=a²-b²}
=sec²A-tan²A
=1
= RHS {using identity}
Hence proved.
" Hope it helps :) "
Similar questions
Biology,
30 days ago
Computer Science,
2 months ago
Science,
2 months ago
Math,
9 months ago
English,
9 months ago