Math, asked by nazerraniya, 4 months ago

Prove that (secA-cosA)(cotA+tanA)=tanA secA​

Answers

Answered by Asterinn
14

Given :

(secA-cosA)(cotA+tanA)=tanA secA

To prove :

LHS = RHS

Proof :

 \tt R.H.S = tanA \: secA

 \tt LHS = (secA-cosA)(cotA+tanA)

Now , we know that :-

 \boxed{ \boxed{ \tt sec \: x =  \frac{1}{cos \: x} }} \\ \\  \boxed{ \boxed{ \tt cot \: x =  \frac{cos \: x}{sin \: x} }}  \\  \\ \boxed{ \boxed{ \tt tan \: x =  \frac{sin \: x}{cos \: x} }}

 \tt \longrightarrow( \dfrac{1}{cos \: A} -cos \: A)(\dfrac{cos \: A}{sin \: A}+\dfrac{sin \: A}{cos \: A}) \\  \\  \tt \longrightarrow( \dfrac{1- {cos}^{2}  \: A}{cos \: A} )(\dfrac{ {cos}^{2}  \: A + {sin}^{2}  } {cos \: A \: sin  \: A}) \\  \\  \tt\longrightarrow( \dfrac{ {sin}^{2}  \: A}{cos \: A} )(\dfrac{1 } {cos \: A \: sin  \: A}) \\   \\  \\  \tt\longrightarrow( \dfrac{ {sin}  \: A}{cos \: A} )(\dfrac{1 } {cos \: A \: }) \\  \\  \\ \tt\longrightarrow \: tan \:  A \:  \:  {sec \: A \: }

Therefore, LHS = RHS

Hence Proved

Similar questions