Math, asked by bngupta52, 10 months ago

Prove that: (secA+cosecA)(sinA+cosA)=tanA+cotA+2=2+secAcosecA​

Answers

Answered by rk84678010
1

Answer: L.H.S.=(secA+cosecA) (sin A+cosA)

=secA(sinA+cosA) + cosecA(sinA+cosA)

=sinA*secA +cosA*secA +cosecA*sinA +cosecA*cosA

=sinA/cosA +1+1+cosA/sinA

=2+sinA/cosA+cosA/sinA

=2+sin^2 A+cos^2 A /sinA*cosA

=2+ 1/sinA*cosA (sin^2 A+cos^2 A=1)

=2+secA*cosecA=RHS

Hence Proved.

Similar questions