prove that (secA+tanA-1)(secA-tanA+1)
Answers
Answered by
1
(secA + tanA - 1) ( secA - tanA +1)
= sec2A - secAtanA + secA + secAtanA - tan2A +tanA - secA + tanA - 1
= sec2A - tan2A + 2tanA - 1
= 1 + 2tanA - 1
= 2tanA
= sec2A - secAtanA + secA + secAtanA - tan2A +tanA - secA + tanA - 1
= sec2A - tan2A + 2tanA - 1
= 1 + 2tanA - 1
= 2tanA
Answered by
0
(secA+tanA-1)(secA-tanA+1)
={secA+(tanA-1)} {secA-(tanA-1)}
=sec²A-(tanA-1)²
=sec²A-tan²A-1+2tanA
=1-1+2tanA
=2tanA
Similar questions