Prove that-(secA+tanA-1)(secA-tanA+1)=2tanA
Answers
Answered by
11
{secA+(tanA-1)}{secA-(tanA-1)}=(secA)² - (tanA-1)²
=sec²A - tan²A - 1 + 2tanA
=1 - 1 + 2tanA
=2tanA
=sec²A - tan²A - 1 + 2tanA
=1 - 1 + 2tanA
=2tanA
manjarighosh:
thanks akansha
Answered by
16
We can write the above equation as
{(secA)+(tanA-1)}*{(secA) - (tanA-1)}
It is in the formula (a+b)*(a-b) = a²-b²
So,
=> (secA)² - (tanA-1)²
=> sec²A - [tan²A + 1 - 2tanA]
=> sec²A - tan²A - 1 +2tanA
=> (sec²A - tan²A) - 1 +2tanA ......As sec²A - tan²A = 1
So,
=> 1 - 1 +2tanA
= 2tanA
{(secA)+(tanA-1)}*{(secA) - (tanA-1)}
It is in the formula (a+b)*(a-b) = a²-b²
So,
=> (secA)² - (tanA-1)²
=> sec²A - [tan²A + 1 - 2tanA]
=> sec²A - tan²A - 1 +2tanA
=> (sec²A - tan²A) - 1 +2tanA ......As sec²A - tan²A = 1
So,
=> 1 - 1 +2tanA
= 2tanA
Similar questions
English,
8 months ago
Physics,
8 months ago
Social Sciences,
1 year ago
Chemistry,
1 year ago
Math,
1 year ago