prove that secA+tanA-1 × secA-tanA+1=2tanA
Answers
Answered by
2
We can write the above equation as{(secA)+(tanA-1)}*{(secA) - (tanA-1)}It is in the formula (a+b)*(a-b) = a²-b²So,=> (secA)² - (tanA-1)²=> sec²A - [tan²A + 1 - 2tanA]=> sec²A - tan²A - 1 +2tanA=> (sec²A - tan²A) - 1 +2tanA ......As sec²A - tan²A = 1So,=> 1 - 1 +2tanA= 2tanA
There is an alternate method too:
[secA+(tanA-1)(secA-(tanA-1)]
=sec²A-(tanA-1)²
=1/cos²A-(tan²A-2tanA+1)
=1+tan²A-tan²A+2tanA-1
=(1-1)tan²A-tan²A + 2tanA
=0+0+2tanA
=2tanA
Hope This Helps :)
There is an alternate method too:
[secA+(tanA-1)(secA-(tanA-1)]
=sec²A-(tanA-1)²
=1/cos²A-(tan²A-2tanA+1)
=1+tan²A-tan²A+2tanA-1
=(1-1)tan²A-tan²A + 2tanA
=0+0+2tanA
=2tanA
Hope This Helps :)
Answered by
1
Ans.
[secA +(tan A-1)] × [secA -(tan A- 1)]
° we know that
(a² - b²) = (a+b) (a-b)
so
sec²A - (tanA-1)²
1 + tan²A - (tan²A + 1 - 2tanA)
1 + tan²A - tan²A - 1 + 2tanA
= 2tanA
I hope this will help you please mark it as brainliest
[secA +(tan A-1)] × [secA -(tan A- 1)]
° we know that
(a² - b²) = (a+b) (a-b)
so
sec²A - (tanA-1)²
1 + tan²A - (tan²A + 1 - 2tanA)
1 + tan²A - tan²A - 1 + 2tanA
= 2tanA
I hope this will help you please mark it as brainliest
Similar questions