Math, asked by varun1410, 1 year ago

Prove that
(secA + tanA:-1)/(tanA-secA+1)=cosA/(1-sinA)

Answers

Answered by TheNightHowler
3

Answer:

Heya mate.....

Kindly refer to the attachment.

Hope it helps.....

Attachments:
Answered by Anonymous
4

Answer:

Step-by-step explanation:

secA+tanA-1)/tanA-secA+1)

We know that sec^2-tan^2=1

=(secA+tanA-(sec^2 A - tan ^2A)) /tanA-secA+1)

We also know that a^2-b^2=(a+b)(a-b)

= (sec A + tan A - (sec A + tan A) ( sec A - tan A)) / ( tanA-secA+1)

= ( sec A + tan A ) ( 1- (sec A - tan A)/ ( tanA-secA+1)

= (sec A + tan A)/(+ tan A - sec A)/(tan A- sec A+ 1)

= (sec A + tan A)

= 1/cos A + sin A/ cos A

= (1+ sin A)/ cos A

= (1 + sin A )(1- sin A)/(cos A (1- sin A))

= (1- sin ^2 A/(cos A (1- sin A))

= cos ^2 A / (cos A (1- sin A))

= cos A /(1- sin A)

Similar questions