Prove that √((secA - tanA)/(secA + tanA)) = cosA/(1+sinA)
No absurd answers please.
Answers
Answer:
Step-by-step explanation:
multiply and divide the question by root over secA-tanA we get
√((secA-tanA)²/(sec²A-tan²A)) and we know that the denominator is a trigonometric identity ; so denominator equals 1 and the expression becomes
(secA-tanA) [the root gets cancelled with square]
secA=1/cosA and tanA=sinA/cosA
plugging in we get
(1-sinA)/cosA--------(1)
now we know sin²A+cos²A=1 so
cos²A=1-sin²A further we get
cos²A=(1+sinA)(1-sinA) so 1-sinA will be
cos²A/(1+sinA) now plugging the 1-sinA value in (1) we get
cos²A/(1+sinA)*1/cosA as we observe one cosA in the denominator gets cancelled with the cosA in the numerator leaving a single cosA in the numerator so the final value will be
cosA/(1+sinA) hence L.H.S=R.H.S
hence proved
I REALLY HOPE THIS HELPS YOU