Math, asked by Arfat556, 1 year ago

Prove that :secA+tenA=cosA/sinA

Answers

Answered by santhoshkalam19
0

Answer:

your answer is here buddy....

secA + tanA =LHS

1/cosA + sinA/cosA.....

... .(secA=1/cotA & tanA=sinAcosA)

now, cross multiply-

cosA + sinA

cos²A

cosA + sinA

cos²A cos²A

now taking roots for the denominator-

cosA + sinA

cos²A √cos²A

then,

cosA + sinA

cosA cosA

(cosA/cosA get canceled)

SinA/cosA

(by reciprocal)

CosA = RHS

SinA

hence proved"

hope this will help you...

plss mark as brainlist if you like my answer..

and press ♥️♥️ if my answer touches your heart ♥️♥️.....

follow me for more answers...

@Santhosh_Rao#

Answered by waqarsd
1

Question.

secx + tanx =  \frac{cosx}{1 - sinx}

Step-by-step explanation:

consider \: rhs \\  \\  \frac{cosx}{1 - sinx}  \\  \\ multiply \:  \: with \:  \: (1 + sinx) \\  \\   = \frac{cosx}{(1 - sinx)} \times  \frac{(1 + sinx)}{(1  +  sinx)} \\  \\   = \frac{cosx(1 + sinx)}{1 -  {sin}^{2}x }  \\  \\  =  \frac{cosx(1 + sinx)}{ {cos}^{2} x}  \\  \\  =  \frac{1 + sinx}{cosx}  \\  \\  =  \frac{1}{cosx}  +  \frac{sinx}{cosx}  \\  \\  = secx + tanx \\  \\

formulae \\  \\  {cos}^{2} x +  {sin}^{2} x = 1 \\  \\ cosx \: secx \:  = 1 \\  \\  \frac{sinx}{cosx}  = tanx \\  \\

HOPE IT HELPS

Similar questions