Math, asked by ghulejayshree819, 11 months ago

sin^2theta /cos theta +cos theta =sec theta

Answers

Answered by Anonymous
28

AnswEr :

\large\star\sf\frac{sin^2\theta}{cos\theta} + cos\theta \: = \: sec\theta

\bullet A basic tip for these type of questions is that we have to prove Left hand side(L.H.S) of question to the Right hand side (R.H.S) of question.

\underline{\dag\:\textsf{Let's \: head \: to \: the \: question \: now:}}

\bullet Taking the left hand side of question

\large\ : \implies\sf\frac{sin^2\theta}{cos\theta} + cos\theta

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{Taking \: L.C.M}) }

\large\ : \implies\sf\frac{sin^2\theta + cos^2\theta}{cos\theta}

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{ sin^2\theta  +  cos^2\theta = 1}) }

\large\ : \implies\sf\frac{1}{cos\theta}

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{ sec\theta = \frac{1}{cos\theta} }) }

\normalsize\ : \implies\sf\ sec\theta

\bullet Here, we get the Right hand side of question.

\normalsize\ : \implies\sf\ L.H.S = R.H.S

\large\ : \implies{\underline{\boxed{\sf{Hence \: proved!!}}}}

Some important identities related to it :

\boxed{\begin{minipage}{6cm} Important  Trigonometric identities :- \\ \\ $\: \: 1)\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\cos^2\theta=1-\sin^2\theta \\ \\ 4)1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5) \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\sec^2\theta=1+\tan^2\theta \\ \\ 8)\sec^2\theta-\tan^2\thetha=1 \\ \\ 9)\tan^2\theta=\sec^2\theta-1$\end{minipage}}


Anonymous: Awesome
Similar questions