Math, asked by mukulgoel9876, 10 months ago

Prove that (sin 0+ cosec 0)^2 +(cos 0 + sec 0)^2 = 7+tan^2 0+ cot^2 0.

Answers

Answered by Hardwork1321
21

Answer:

Step-by-step explanation:

Attachments:
Answered by lublana
12

Answer with Step-by-step explanation:

LHS

(sin\theta+cosec\theta)^2+(cos\theta+sec\theta)^2

sin^2\theta+cosec^2\theta+2sin\theta cosec\theta+sec^2\theta+cos^2\theta+2cos\theta sec\theta

Using identity :(a+b)^2=a^2+b^2+2ab

We  know that

tan^2\theta+1=sec^2\theta, 1+cot^2\theta=cosec^2\theta,sec\theta=\frac{1}{cos\theta},cosec\theta=\frac{1}{sin\theta}

sin^2\theta+cos^2\theta=1

Using the formula

1+1+cot^2\theta+2sin\theta\times \frac{1}{sin\theta}+1+tan^2\theta+2cos\theta\times \frac{1}{cos\theta}

3+tan^2\theta+cot^2\theta+2+2

7+tan^2\theta+cot^2\theta

LHS=RHS

Hence, proved.

#Learns more:

https://brainly.in/question/6770944

Similar questions