Math, asked by riyaeswara, 10 months ago

Prove that sin^-1(3/5)-sin^-1(8/17)=cos^-1(84/85).

Attachments:

Answers

Answered by santoshtripathi158
2

Step-by-step explanation:

please follow me I will follow you back

Answered by CottenCandy
35

Solutions

\bf \large \:  \sin(x)  =  \frac{3}{5}  \: and \:  \sin(y)  =  \frac{8}{17}  \\  \cos(y)  =  \sqrt{1 -  { \sin }^{2}x }  \\  =  \sqrt{1 -  \frac{9}{25} }  \\  =  \frac{4}{5}  \\ and \\  \cos(y)  =  \sqrt{1 -  \sin^{2} y}  \\  =  \sqrt{1 -  \frac{64}{289} }  \\  =  \frac{15}{17}  \\  \\ now \: we \: have \:  \\  \cos(x - y)  =  \cos(x)  \cos(y)  +  \sin(x)  \sin(y) \\   =  \frac{4}{5}  \times  \frac{15}{17}  +  \frac{3}{5}  \times  \frac{8}{17} \\  =  \frac{84}{85}  \\ therefore \\ x - y =  { \cos}^{ - 1}  \frac{84}{85}  \\  \\ hence  \\  { \sin }^{ - 1}  \frac{3}{5}  -  { \sin }^{ - 1}  \frac{8}{17}  =    { \cos }^{ - 1}  \frac{84}{85}

Hence proved

______________

Similar questions