Prove that Sinθ (1+tanθ)+cosθ (1+cotθ)=secθ+cosecθ .
Answers
Solution :
LHS -
sin theta ( 1 + tan theta ) + cos theta ( 1 + cot theta )
> sin theta ( 1 + sin theta/cos theta) + cos theta ( 1 + cos theta/sin theta)
> sin theta ( cos theta + sin theta )/ cos theta + cos theta ( sin theta + cos theta )/sin theta
> [ sin theta/ cos theta ] { cos theta + sin theta } + [ cos theta/sin theta ] { cos theta + sin theta }
> tan theta [ sin theta + cos theta ] + cot theta [ sin theta + cos theta ]
Comparing this with the original expression , there are a lot of similarities :P
Now taking ( sin theta + cos theta ) common
> [ sin theta + cos theta ]{ tan theta + cot theta ]
> [ sin theta + cos theta ][ sin² theta + cos² theta ]/[ sin theta cos theta ]
> [ sin theta + cos theta ][ 1 ]/[ sin theta cos theta ]
> [ sin theta + cos theta ]/[ sin theta cos theta ]
> [ sin theta]/[ sin theta cos theta ] + [ cos theta ]/[ sin theta cos theta ]
> [ 1/cos theta ] + [ 1/sin theta ]
> sec theta + cosec theta .
LHS = RHS
EXPLANATION.
⇒ Sin∅(1 + tan∅) + Cos∅(1 + cot∅) = sec∅ + cosec∅.
As we know that,
⇒ sin∅ + sin∅ tan∅ + cos∅ + cos∅ cot∅.
Formula of :
⇒ tan∅ = sin∅/cos∅.
⇒ cot∅ = cos∅/sin∅.
⇒ sec∅ = 1/cos∅.
⇒ cosec∅ = 1/sin∅.
Using this formula in equation, we get.
⇒ sin∅ + sin∅(sin∅/cos∅) + cos∅ + cos∅(cos∅/sin∅).
⇒ sin∅ + sin²∅/cos∅ + cos∅ + cos²∅/sin∅.
⇒ cos∅ sin∅ + sin²∅/cos∅ + sin∅ cos∅ + cos²∅/sin∅.
Taking L.C.M in equation, we get.
⇒ sin∅[cos∅ sin∅ + sin²∅] + cos∅[sin∅ cos∅ + cos²∅]/cos∅ sin∅.
⇒ cos∅ sin²∅ + sin³∅ + sin∅ cos²∅ + cos³∅/cos∅ sin∅.
⇒ (sin³∅ + cos³∅) + (cos∅ sin²∅ + sin∅ cos²∅)/cos∅ sin∅.
⇒ (sin³∅ + cos³∅) + sin∅ cos∅(sin∅ + cos∅)/cos∅ sin∅.
As we know that,
Formula of :
⇒ (x³ + y³) = (x + y)(x² - xy + y²).
Using this formula in equation, we get.
⇒ (sin∅ + cos∅)(sin²∅ + cos²∅ - sin∅ cos∅) + sin∅ cos∅(sin∅ + cos∅)/cos∅ sin∅.
⇒ (sin∅ + cos∅)(sin²∅ + cos²∅ - sin∅ cos∅ + sin∅ cos∅)/cos∅ sin∅.
⇒ (sin∅ + cos∅)/cos∅ sin∅.
⇒ sin∅/cos∅ sin∅ + cos∅/cos∅ sin∅.
⇒ 1/cos∅ + 1/sin∅.
⇒ sec∅ + cosec∅.
Hence proved.
MORE INFORMATION.
(1) = sin²∅ + cos²∅ = 1.
(2) = 1 + tan²∅ = sec²∅.
(3) = 1 + cot²∅ = cosec²∅.