Math, asked by sweety218, 1 year ago

prove that sin^2 6x-sin^2 4X=sin 2X. sin 10X ?

Answers

Answered by Swarnimkumar22
24

\bold{\huge{\underline{Solution-}}}

 \bf \: Used  \: formula \\  \boxed{ \bf 1. {cos}^{2} A -  {cos}^{2} B = sin(B + A) \: sin(B - A)} \\  \boxed{ \bf \: 2. \:  {sin}^{2} A \:  = 1 -  {cos}^{2}A }

 \bf \: L.H.S \\   \bf \:{sin}^{2}6x -  {sin}^{2}  4x \\  \\  \implies \bf \: (1 -  {cos}^{2} 6x) - (1 -  {cos}^{2} 4x) \:  \\  \\  \implies \bf \:  {cos}^{2} 4x -  {cos}^{2} 6x \\  \\  \implies \bf \: sin(6x + 4x) \: sin(6x - 4x) \\  \\  \text{ \: now \: using \: the \: formula \:} \bf \:  {cos}^{2} A -  {cos}^{2} B \\  \\  \implies \bf \: sin \: 10x \: sin \: 2x \\  \\  \implies \bf \: sin \: 2x \: sin \: 10x

Similar questions