Prove that sin^2 75° - sin^2 15° = √3/2
Answers
Answered by
3
Answer:
Value\: of \:sin^{2}75-sin^{2}15=\frac{3}{4}
Step-by-step explanation:
Given sin²75°- sin²15°
= sin²(90°-15°)-sin²15°
= cos²15°-sin²15°
/* sin(90-x) = cosx */
= cos (2×15°)
/* cos²x-sin²x = cos2x */
= cos² 30°
= \left(\frac{\sqrt{3}}{2}\right)^{2}
= \frac{3}{4}
Therefore,
Value\: of \:sin^{2}75-sin^{2}15=\frac{3}{4}
Similar questions