Math, asked by amar1572, 1 year ago

prove that sin 2 alpha + sin 2 Beta + sin 2 Gama equal to 2 into sin alpha + sin beta + sin Gamma into one + cos alpha + cos beta + cos gamma. if alpha + beta + Gama equal to zero

Answers

Answered by mexci1235
7
p prove that sin theta + alpha + sin theta 2 + theta + sin theta 2 + gana equal to 2 into sin alpha + sin theta + sin come up EP 1 + cos theta + cos theta + cos alpha beta gamma is equal to zero
Answered by madeducators4
6

Given :

\alpha + \gamma + \beta = 0

To Prove :

sin2\alpha + sin2\beta + sin 2 \gamma =2 ( sin\alpha +sin\beta + sin\gamma )(1+ cos \alpha + cos \beta + cos \gamma )

Solution :

RHS:

=2 ( sin\alpha +sin\beta + sin\gamma )(1+ cos \alpha + cos \beta + cos \gamma )

=2(sin\alpha+ sin\alpha cos\alpha +sin\alpha cos \beta + sin\alpha cos \gamma  + sin\beta + sin\beta cos \alpha + sin\beta cos \beta + sin\alpha cos \gamma + sin\gamma + sin\gamma cos \alpha + sin\gamma cos \beta + sin\gamma cos \gamma )= 2(sin\alpha cos\alpha + sin\beta cos \beta + sin\gamma cos \gamma )+ 2[sin\alpha ( sn\alpha cos\beta + cos\alpha sin\beta ) +sin\beta+ ( sin\alpha cos \gamma + cos \alpha sin\gamma ) + sin\gamma +( sin\beta cos \gamma + cos\beta sin\gamma)                                                                                             -(1)

\alpha + \beta + \gamma  = 0

So we can write :

\alpha + \beta = -\gamma

We can also write :

sin(\alpha + \beta ) = - sin \gamma

Similarly :

sin(\beta + \gamma ) = -sin\alpha

and also :

sin(\alpha + \gamma ) = - sin \gamma

Now ;

2[sin\alpha + sin \beta + sin \gamma + sin ( \alpha + \beta ) + sin ( \beta + \gamma ) + sin (\alpha + \gamma )]

=2(sin\alpha + sin \beta + sin \gamma -sin\gamma - sin\beta - sin\alpha )\\=o

On putting this  obtained value in eq 1 we get :

RHS =2(sin\alpha cos\alpha + sin\beta cos\beta + sin\gamma cos \gamma )\\

      = sin2\alpha + sin2\beta + sin2\gamma

      = LHS

Since , RHS comes equal to the LHS .

Hence , proved  

Similar questions