Math, asked by avaninivas2002, 4 months ago

prove that sin 20° cos 25° + cos 20 Sin 25=1/√2

Answers

Answered by Anonymous
23

 \huge\underline{\underline{\bf { \red A \green N \pink S\blue W \orange E \purple R \green{...}}}}

 \longrightarrow \sf \sin20 \cos25 +  \cos20 \sin25 =  \frac{1}{ \sqrt{2} } \\  \\\longrightarrow \sf  \sin(90 - 70) \cos25  +  \cos(90 - 70) \sin25=  \frac{1}{ \sqrt{2} }  \\  \\  \longrightarrow \sf\cos70 \cos25  +   \sin70 \sin25=  \frac{1}{ \sqrt{2} }   \\  \\\longrightarrow \sf \cos(70 - 25) =  \frac{1}{ \sqrt{2} }  \\  \\  \longrightarrow \sf\cos45=  \frac{1}{ \sqrt{2} }   \\  \\\longrightarrow \sf  \frac{1}{ \sqrt{2} } =  \frac{1}{ \sqrt{2} }

LHS = RHS

Hence Proved

Answered by salmonpanna7
1

Step-by-step explanation:

=> sin 20 cos 25 + cos 20 sin 25 =1/√2

=> sin (90-70) = 25+cos (90-70) sin = 1/√2

=> cos 70 cos 25 + sin 70 sin 25 = 1/√2

=> cos (70-25) = 1/√2

=> cos= 45= 1/√2

=> 1/√2 = 1/√2

LHS = RHS.........proved.

this is your answer friends............ Salmønpanna

Hence

Similar questions