prove that sin 20° sin 40° sin 60° sin 80° =3/16
Answers
Answer:
Step-by-step explanation:
sin20. sin 40. sin60. sin80
=> sin60[sin20.sin40.sin80]
=>√3/2[sin20.sin(60-20).sin(60+20)]
=>√3/2[sin 3(20)/4]
=>√3/2[sin 60/4]
=>√3/2[√3/2*4]
=>√3/2*√3/8
=3/16
given: sin 20°, sin 40°, sin 60° and sin 80°
To find: sin 20° sin40° sin60° sin80° = 3/16
explanation:
by taking L.H.S.
= sin20° sin40° sin(90° - 10°)sin 60°
= sin20° sin40° cos10°
= (2sin20° sin40°)cos10°
= (cos 20° - cos60°)cos10°
= (cos20° cos10° - cos60° cos10°)
= (
2cos20°cos10° -
cos10°)
= [
(cos30° + cos10°)-
cos10°]
= × cos30°
=
=
hence the left hand side of the equation is equal to the right hand side of the equation.
proved L.H.S. = R.H.S.