Math, asked by Tithi11, 1 year ago

prove that sin 20° sin 40° sin 60° sin 80° =3/16

Answers

Answered by pranavchturvedi18
50

Answer:

Step-by-step explanation:

sin20. sin 40. sin60. sin80

=> sin60[sin20.sin40.sin80]

=>√3/2[sin20.sin(60-20).sin(60+20)]

=>√3/2[sin 3(20)/4]

=>√3/2[sin 60/4]

=>√3/2[√3/2*4]

=>√3/2*√3/8

=3/16

Answered by sarahssynergy
2

given: sin 20°, sin 40°, sin 60° and sin 80°

To find: sin 20° sin40° sin60° sin80° = 3/16

explanation:

by taking L.H.S.

                               = sin20° sin40° sin(90° - 10°)sin 60°

                               = sin20° sin40° cos10°\frac{\sqrt{3} }{2}

                               = \frac{1}{2} (2sin20° sin40°)cos10°\frac{\sqrt{3} }{2}

                               = \frac{1}{2} (cos 20° - cos60°)cos10°\frac{\sqrt{3} }{2}

                               = \frac{\sqrt{3} }{4} (cos20° cos10° - cos60° cos10°)

                               = \frac{\sqrt{3} }{4} (\frac{1}{2} 2cos20°cos10° - \frac{1}{2} cos10°)

                               = \frac{\sqrt{3} }{4} [\frac{1}{2} (cos30° + cos10°)-\frac{1}{2} cos10°]

                               = \frac{\sqrt{3} }{4} . \frac{1}{2}  × cos30°

                               = \frac{\sqrt{3} }{4} . \frac{1}{2} . \frac{\sqrt{3} }{2}

                               = \frac{3}{16}

hence the left hand side of the equation is equal to the right hand side of the equation.

                           proved L.H.S. = R.H.S.  

Similar questions