Math, asked by csanyal6369, 1 year ago

Prove that sin (240+theta)+cos(330+theta)=0

Answers

Answered by Pitymys
27

Make use of the following identities:

 \sin (180^o+\theta)=-\sin (\theta)\\<br />\cos (360^o \pm \theta)=\cos (\theta)\\<br />\cos (90^o-\theta)=\sin (\theta)

Using the above identities,

 \cos (330^o + \theta)=\cos (360^o + \theta-30^o)=\cos ( \theta-30^o)=\sin(60^o+\theta)

 \sin (240^o+\theta)=-\sin(60^o+\theta)

 \sin (180^o+\theta)+\cos (330^o + \theta)=-\sin(60^o+\theta)+\sin(60^o+\theta)=0=RHS

The proof is complete.

Answered by durvang24
9

Step-by-step explanation:

 \sin(240 + theta)  +  \cos(330 + theta) \\  = \sin(240)  \cos(theta)  +  \cos(240)  \sin(theta)  +  \cos(330) \cos(theta) -  \sin(330)  \sin(theta)  \\ = (  \sin(270 - 30) ) \cos(theta)  +  (\cos(270 - 30) ) \sin(theta)  +  (\cos(360 - 30) ) \cos(theta)  -  (\sin(360 - 30) ) \sin(theta)  \\  = ( \sin(270)  \cos(30)  -  \cos(270)  \sin(30) ) \cos(theta)  + ( \cos(270)  \cos(30)  +  \sin(270)  \sin(30) ) \sin(theta)  + ( \cos(360)  \cos(30)  +  \sin(360)  \sin(30) ) \cos(theta)  - ( \sin(360)\cos(30) -  \cos(360)   \sin(30))  \sin(theta)  \\  = ( - 1 \times  \frac{ \sqrt{3} }{2}  - 0 \times  \frac{1}{2} ) \cos(theta)  + (0 \times  \frac{ \sqrt{3} }{2}  + 1 \times  \frac{1}{2} ) \sin(theta)  + (1 \times  \frac{ \sqrt{3} }{2}  + 0 \times  \frac{1}{2} ) \cos(theta)  - (0 \times  \frac{ \sqrt{3} }{2}  - 1 \times  \frac{1}{2} ) \sin(theta)  \\  = -  \frac{ \sqrt{3} }{2}  \cos(theta)  +  \frac{1}{2}  \sin(theta)  +  \frac{ \sqrt{3} }{2}  \cos(theta)  - ( -  \frac{1}{2} \sin(theta)) \\  =  -  \frac{ \sqrt{3} }{2}   \cos(theta)  +  \frac{ \sqrt{3} }{2}  \cos(theta)  +  \frac{1}{2}  \sin(theta)  +  \frac{1}{2}  \sin(theta)  \\  = 0  +  \sin(theta)  =  \sin(theta)

since

 \sin(theta) \:  is \: not = 0

Hence proved

pls follow me

Similar questions