Math, asked by kavisavi, 6 months ago

prove that: sin^3thetha+cos^3thetha/sin thetha+ cos thetha =1-sin thetha×cos thetha.​

Attachments:

Answers

Answered by anandaganur
1

Answer:

wkt

a^3+b^3=(a+b)(a^2-ab+b^2)

(sin +cos)(sin^2-sincos +cos^2)/(sin+cos)

=1(sin^2+cos^2-sincos)

=1-sincos

sorry that I not wrote theta

Answered by NewGeneEinstein
3

Step-by-step explanation:

LHS:-

\dfrac {sin^3\theta+cos^3\theta}{(sin\theta+cos\theta)}

  • Use algebraic identity

\boxed{\sf a^3+b^3=(a+b)(a^2-ab+b^2)}

\qquad\qquad\sf:\longrightarrow \dfrac {(sin\theta+cos\theta)(sin\theta^2-sin\theta \times cos\theta +cos\theta^2)}{(sin\theta+cos\theta)}

\qquad\qquad\sf:\longrightarrow \dfrac {\cancel {(sin\theta+cos\theta)}(sin^2\theta-sin\theta.cos\theta+cos^2\theta)}{\cancel {(sin\theta+cos\theta)}}

\qquad\qquad\sf:\longrightarrow (sin^2\theta-sin\theta.cos\theta+cos^2\theta)

\qquad\qquad\sf:\longrightarrow (sin^2\theta+cos^2\theta-sin\theta.cos\theta)

\qquad\qquad\sf:\longrightarrow 1-sin\theta\times cos\theta

\therefore \underline{\sf LHS=RHS {}_{(proved)}}.

Similar questions