prove that :- sin 3tita = 3 sin tita - 4 sin³tita
Answers
Answered by
1
Explanation:
Express the left hand side as
sin3θ=sin(θ+2θ)
now expand the right side of this equation using Addition formula
∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯aasin(A±B)=sinAcosB±cosAsinBaa∣∣−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⇒sin(θ+2θ)=sinθcos2θ+cosθsin2θ.......(A)
∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯aacos2θ=cos2θ−sin2θ=2cos2θ−1=1−2sin2θaa∣∣−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The right hand side is expressed only in terms of sinθ's
so we use cos2θ=1−2sin2θ........(1)
∣∣ ∣∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯aasin2θ=2sinθcosθaa∣∣−−−−−−−−−−−−−−−−−−−−−........(2)
Replace cos2θ and sin2θ by the expansions (1) and (2)
into (A)
sin(θ+2θ)=sinθ(1−2sin2θ)+cosθ(2sinθcosθ)
and expanding brackets gives.
sin(θ+2θ)=sinθ−2sin3θ+2sinθcos2θ....(B)
∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯aacos2θ+sin2θ=1⇒cos2θ=1−sin2θaa∣∣−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Replace cos2θ=1−sin2θ into (B)
⇒sin(θ+2θ)=sinθ−2sin3θ+2sinθ(1−sin2θ)
and expanding 2nd bracket gives.
sin(θ+2sinθ)=sinθ−2sin3θ+2sinθ−2sin3θ
Finally, collecting like terms.
sin3θ=3sinθ−4sin3θ=R.H.S hence proven
Express the left hand side as
sin3θ=sin(θ+2θ)
now expand the right side of this equation using Addition formula
∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯aasin(A±B)=sinAcosB±cosAsinBaa∣∣−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⇒sin(θ+2θ)=sinθcos2θ+cosθsin2θ.......(A)
∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯aacos2θ=cos2θ−sin2θ=2cos2θ−1=1−2sin2θaa∣∣−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The right hand side is expressed only in terms of sinθ's
so we use cos2θ=1−2sin2θ........(1)
∣∣ ∣∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯aasin2θ=2sinθcosθaa∣∣−−−−−−−−−−−−−−−−−−−−−........(2)
Replace cos2θ and sin2θ by the expansions (1) and (2)
into (A)
sin(θ+2θ)=sinθ(1−2sin2θ)+cosθ(2sinθcosθ)
and expanding brackets gives.
sin(θ+2θ)=sinθ−2sin3θ+2sinθcos2θ....(B)
∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯aacos2θ+sin2θ=1⇒cos2θ=1−sin2θaa∣∣−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Replace cos2θ=1−sin2θ into (B)
⇒sin(θ+2θ)=sinθ−2sin3θ+2sinθ(1−sin2θ)
and expanding 2nd bracket gives.
sin(θ+2sinθ)=sinθ−2sin3θ+2sinθ−2sin3θ
Finally, collecting like terms.
sin3θ=3sinθ−4sin3θ=R.H.S hence proven
Similar questions