Prove that sin (45°+theta)-sin (45°+theta)
Answers
Answered by
0
Step-by-step explanation:
Form a general relation for sin(A + B) - sin(A -
B):
=> {sinA.cosB + cosA.sinB} - {sinA.cosB - cosA.sinB]
=> sinA.cosB + cosA.sinB - sinA.cosB +
cosA.sinB]
=> 2cosA.sinB
2
In the question, A = 45° & B = theta
So,
sin(45° + theta) - sin(45° - theta) is:
=> 2cos45°.sin(theta)
=> 2(1/√2).sin(theta)
=> √2 sin(theta)
proved
Similar questions
Business Studies,
9 days ago
English,
9 days ago
Hindi,
19 days ago
Math,
9 months ago
Chemistry,
9 months ago