Prove that- sin^4a + cos^4a = 1- 2sin^2a.cos^2a
Answers
Answered by
126
open the identity (sin²A+cos²A)²
as (a+b)²=a²+b²+2ab
(sin²A+cos²A)²=sin^4A+cos^4A+2sin²Acos²A use sin²a+cos²a=1
(1)² - 2sin²Acos²A = sin^4A+cos^4A
1-2sin²Acos²A = sin^4A+cos^4A
hence proved
as (a+b)²=a²+b²+2ab
(sin²A+cos²A)²=sin^4A+cos^4A+2sin²Acos²A use sin²a+cos²a=1
(1)² - 2sin²Acos²A = sin^4A+cos^4A
1-2sin²Acos²A = sin^4A+cos^4A
hence proved
Answered by
91
To Prove: sin⁴A + cos⁴A = 1 - 2sin²A × cos²A
Solution: sin⁴A + cos⁴A can be expressed as;
α² + β² = (α + β)² - 2αβ
(sin²A)² + (cos²A)² = (sin²A + cos²A)² - 2(sin²A)(cos²A)
(sin²A)² + (cos²A)² = (1)² - 2(sin²A)(cos²A)
(sin²A)² + (cos²A)² = 1 - 2 × sin²A × cos²A
Hence Proved.
Identities used in the Solution:
α² + β² = (α + β)² - 2αβ
sin²θ + cos²θ = 1
Similar questions