Math, asked by Anji210, 1 year ago

prove that

sin (5π/18) - cos (4π/9) = √3 sin(π/9)

Answers

Answered by ajeshrai
18
you can see your answer
Attachments:
Answered by Shubhendu8898
22

Given,

 L.H.S \to  \sin \frac{5\pi}{18} \  - \  \cos \frac{4\pi}{9} \\ \\   = \cos (\frac{\pi}{2} - \frac{5\pi}{18})  -  \cos \frac{4\pi}{9} \\ \\ = \cos (\frac{9\pi- 5\pi}{18})  -  \cos \frac{4\pi}{9}  \\ \\ = \cos (\frac{4\pi}{18})  -  \cos \frac{4\pi}{9} \\ \\ = \cos (\frac{2\pi}{9})  -  \cos \frac{4\pi}{9}  \\ \\  = 2  \ \sin \frac{6\pi}{18}. \sin \frac{2\pi}{18}  \\ \\ = 2  \ \sin \frac{\pi}{3}. \sin \frac{\pi}{9} \\ \\ =2   \frac{\sqrt{3}}{2}. \sin \frac{\pi}{9} \\ \\   = \sqrt{3} \ \sin \frac{\pi}{9}  \\ \\ = R.H.S. \ \ \textbf{Proved}

Similar questions